Explicamos los conceptos básicos relacionados con las funciones lineales y resolvemos algunos problemas.
Índice:
Una función lineal es una función polinómica de primer grado. Es decir, tiene la siguiente forma
siendo \(m\neq 0\).
La gráfica de una función lineal es siempre una recta.
La pendiente de la función es \(m=2\) y la ordenada es \(n=-1\).
La pendiente es el coeficiente de la variable, es decir, \(m\).
Geométricamente, cuanto mayor es la pendiente, más inclinada es la recta. Es decir, más rápido crece la función.
Rectas con pendientes 1, 2, 3 y -1:
Observad que la recta con pendiente negativa \(-1\) es decreciente (la roja). Las otras tres rectas son crecientes.
De las rectas crecientes, la que crece más rápidamente es la verde (pendiente \(3\)).
Como una función lineal es una recta, para representar su gráfica sólo tenemos que trazar la recta que une dos de sus puntos. Para ello, calculamos la imagen de dos puntos cualesquiera.
La definición formal de la gráfica de la función es el conjunto de puntos siguiente:
$$ \{ (x, f(x))\}$$
Vamos a representar la gráfica de la función
Hacemos una tabla para calcular dos puntos de la gráfica:
Representamos la recta a partir de los puntos \((4,5)\) y \((-2,-7)\):
Observad que la recta corta al eje Y por debajo del eje X, esto se debe a que la ordenada es negativa (\(n = -3\)).
Una función lineal siempre corta al eje Y en un punto. También, corta al eje X en un punto.
El punto de corte con el eje Y es el punto de la recta que tiene la primera coordenada igual a \(0\):
El punto de corte con el eje X es el punto de la recta que tiene \(0\) en la segunda coordenada. Se calcula igualando a \(0\) la función y resolviendo la ecuación obtenida.
Calculamos los puntos de corte de la función del ejemplo anterior,
Corte con el eje Y:
Es el punto
Observad que la segunda coordenada es la ordenada.
Corte con el eje X:
Es el punto
Si tenemos dos puntos de la recta, podemos calcular la expresión algebraica de la función. Sólo tenemos que sustituir las coordenadas de los puntos en la forma general de la función
y resolver el sistema de ecuaciones.
Vamos a calcular la función lineal que pasa por los puntos \((1,2)\) y \((2,7)\).
Tenemos que hallar la pendiente, \(m\), y la ordenada, \(n\).
Primer punto
Como \(x =1\) e \(y=2\), sustituyendo,
Segundo punto
Como \(x =2\) e \(y=7\), sustituyendo,
Tenemos el sistema
Resolviendo el sistema, por ejemplo, por reducción, tenemos que \(m = 5\) (con lo que \(n=-3\)). Por tanto, se trata de la función
Si tenemos dos funciones lineales, podemos preguntarnos si las rectas que representan se cortan y en qué punto lo hacen.
Para responder esta pregunta, sólo tenemos que igualar las dos expresiones algebraicas y resolver la ecuación.
Vamos a calcular el punto de corte de las dos siguientes rectas:
Como \(y = y\), igualando,
Resolvemos la ecuación:
La primera coordenada del punto de corte es \(x=4\). La segunda coordenada la obtenemos calculando su imagen en alguna de las dos rectas:
Por tanto, el punto de corte es \((4,7)\).
Gráfica:
Dos rectas son paralelas si no se cortan en ningún punto (o si son iguales). Esto ocurre cuando tienen la misma pendiente, \(m\).
Dos rectas son perpendiculares si se cortan formando un ángulo recto (ángulo de 45°). Las rectas perpendiculares a la recta con pendiente \(m\) son las que tienen pendiente \(-1/m\).
Las siguientes rectas son paralelas porque tienen la misma pendiente (\(m=2\)):
Las siguientes rectas son perpendiculares porque la pendiente de la una es el opuesto del inverso de la pendiente de la otra:
Calcular los puntos de corte con los ejes y representar la función. ¿Cuál es la pendiente de la recta?
Calcular y representar la función cuya gráfica es una recta que pasa por los puntos \((1,2)\) y \((-3,4)\). ¿Cuál es su pendiente?
Las pendientes de tres rectas son \(m_1 = 1\), \(m_2 = -2\) y \(m_3 = 3\).
¿Cuál de ellas crece más rápidamente? ¿Cuál de ellas es una recta decreciente?
Hallar, si existe, el punto de corte de las siguientes rectas:
¿Son rectas paralelas o perpendiculares?
Hallar, si existe, el punto de corte de las siguientes rectas:
¿Son rectas paralelas o perpendiculares?
Más problemas similares: Rectas y parábolas.