Funciones lineales (rectas)

Explicamos los conceptos básicos relacionados con las funciones lineales y resolvemos algunos problemas.

Índice:

  1. Definición y ejemplo
  2. Pendiente y ordenada
  3. Gráfica
  4. Puntos de corte con los ejes
  5. Función a partir de dos puntos
  6. Intersección de dos funciones
  7. Paralelas y perpendiculares
  8. Problemas resueltos


1. Definición y ejemplo

Una función lineal es una función polinómica de primer grado. Es decir, tiene la siguiente forma

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

siendo \(m\neq 0\).

La gráfica de una función lineal es siempre una recta.

Ejemplo

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

La pendiente de la función es \(m=2\) y la ordenada es \(n=-1\).


2. Pendiente y ordenada


La pendiente es el coeficiente de la variable, es decir, \(m\).

Geométricamente, cuanto mayor es la pendiente, más inclinada es la recta. Es decir, más rápido crece la función.

Ejemplo

Rectas con pendientes 1, 2, 3 y -1:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Observad que la recta con pendiente negativa \(-1\) es decreciente (la roja). Las otras tres rectas son crecientes.

De las rectas crecientes, la que crece más rápidamente es la verde (pendiente \(3\)).


3. Gráfica

Como una función lineal es una recta, para representar su gráfica sólo tenemos que trazar la recta que une dos de sus puntos. Para ello, calculamos la imagen de dos puntos cualesquiera.

La definición formal de la gráfica de la función es el conjunto de puntos siguiente:

$$ \{ (x, f(x))\}$$

Ejemplo

Vamos a representar la gráfica de la función

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Hacemos una tabla para calcular dos puntos de la gráfica:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Representamos la recta a partir de los puntos \((4,5)\) y \((-2,-7)\):

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Observad que la recta corta al eje Y por debajo del eje X, esto se debe a que la ordenada es negativa (\(n = -3\)).


4. Puntos de corte con los ejes


Una función lineal siempre corta al eje Y en un punto. También, corta al eje X en un punto.

El punto de corte con el eje Y es el punto de la recta que tiene la primera coordenada igual a \(0\):

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

El punto de corte con el eje X es el punto de la recta que tiene \(0\) en la segunda coordenada. Se calcula igualando a \(0\) la función y resolviendo la ecuación obtenida.

Ejemplo

Calculamos los puntos de corte de la función del ejemplo anterior,

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Corte con el eje Y:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Es el punto

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Observad que la segunda coordenada es la ordenada.

Corte con el eje X:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Es el punto

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.


5. Función a partir de dos puntos

Si tenemos dos puntos de la recta, podemos calcular la expresión algebraica de la función. Sólo tenemos que sustituir las coordenadas de los puntos en la forma general de la función

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

y resolver el sistema de ecuaciones.

Ejemplo

Vamos a calcular la función lineal que pasa por los puntos \((1,2)\) y \((2,7)\).

Tenemos que hallar la pendiente, \(m\), y la ordenada, \(n\).

Primer punto

Como \(x =1\) e \(y=2\), sustituyendo,

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Segundo punto

Como \(x =2\) e \(y=7\), sustituyendo,

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Tenemos el sistema

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Resolviendo el sistema, por ejemplo, por reducción, tenemos que \(m = 5\) (con lo que \(n=-3\)). Por tanto, se trata de la función

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.


6. Intersección de dos funciones

Si tenemos dos funciones lineales, podemos preguntarnos si las rectas que representan se cortan y en qué punto lo hacen.

Para responder esta pregunta, sólo tenemos que igualar las dos expresiones algebraicas y resolver la ecuación.

Ejemplo

Vamos a calcular el punto de corte de las dos siguientes rectas:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Como \(y = y\), igualando,

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Resolvemos la ecuación:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

La primera coordenada del punto de corte es \(x=4\). La segunda coordenada la obtenemos calculando su imagen en alguna de las dos rectas:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Por tanto, el punto de corte es \((4,7)\).

Gráfica:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.


7. Paralelas y perpendiculares

Dos rectas son paralelas si no se cortan en ningún punto (o si son iguales). Esto ocurre cuando tienen la misma pendiente, \(m\).

Dos rectas son perpendiculares si se cortan formando un ángulo recto (ángulo de 45°). Las rectas perpendiculares a la recta con pendiente \(m\) son las que tienen pendiente \(-1/m\).

Ejemplo

Las siguientes rectas son paralelas porque tienen la misma pendiente (\(m=2\)):

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Las siguientes rectas son perpendiculares porque la pendiente de la una es el opuesto del inverso de la pendiente de la otra:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.


8. Problemas resueltos

Problema 1

Calcular los puntos de corte con los ejes y representar la función. ¿Cuál es la pendiente de la recta?

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

Solución

Problema 2

Calcular y representar la función cuya gráfica es una recta que pasa por los puntos \((1,2)\) y \((-3,4)\). ¿Cuál es su pendiente?

Solución

Problema 3

Las pendientes de tres rectas son \(m_1 = 1\), \(m_2 = -2\) y \(m_3 = 3\).

¿Cuál de ellas crece más rápidamente? ¿Cuál de ellas es una recta decreciente?

Solución

Problema 4

Hallar, si existe, el punto de corte de las siguientes rectas:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

¿Son rectas paralelas o perpendiculares?

Solución

Problema 5

Hallar, si existe, el punto de corte de las siguientes rectas:

Definimos función lineal y explicamos algunos conceptos: pendiente, ordenada, gráfica, punto de corte con los ejes, intersección de dos funciones, rectas paralelas y perpendiculares. Finalmente, resolvemos problemas de aplicación. Matemáticas. Secundaria.

¿Son rectas paralelas o perpendiculares?

Solución



Más problemas similares: Rectas y parábolas.




Problemas y Ecuaciones ©