Regla de Cramer: ejemplos

En esta página explicamos la regla de Cramer y la aplicamos para resolver 4 sistemas de ecuaciones lineales (dos sistemas de dimensión 2x2 y dos sistemas de dimensión 3x3).

Enlace: Calculadora de la regla de Cramer.


Introducción

La regla de Cramer proporciona la solución de sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Se trata de un método muy rápido para resolver sistemas, sobre todo, para sistemas de dimensión 2x2 y 3x3. Para dimensiones mayores, los determinantes son bastante más engorrosos.

Recordad que un sistema de ecuaciones puede escribirse en forma matricial como

Ejemplos de aplicación de la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Bachillerato. Universidad. Matemáticas. Álgebra matricial.

donde

  • \(A\) es la matriz de coeficientes del sistema,

  • \(X\) es la matriz con las incógnitas,

  • \(B\) es la matriz con los términos independientes de las ecuaciones.

Para poder aplicar Cramer, la matriz \(A\) tiene que ser cuadrada y regular (determinante distinto de 0).


La regla de Cramer establece que la incógnita \(x_k\) de la solución del sistema, cuyos coeficientes están en la columna \(k\) de \(A\), es

Ejemplos de aplicación de la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Bachillerato. Universidad. Matemáticas. Álgebra matricial.

donde\(A_k\) es como la matriz \(A\) pero cambiando su columna número \(k\) por la columna de términos independientes, \(B\).

Ejemplos de la regla de Cramer



Ejemplo 1

Sistema de dimensión 2x2:

Ejemplos de aplicación de la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Bachillerato. Universidad. Matemáticas. Álgebra matricial.

Solución

Ejemplo 2

Sistema de dimensión 2x2:

Ejemplos de aplicación de la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Bachillerato. Universidad. Matemáticas. Álgebra matricial.

Solución



Ejemplo 3

Sistema de dimensión 3x3:

Ejemplos de aplicación de la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Bachillerato. Universidad. Matemáticas. Álgebra matricial.

Solución

Ejemplo 4

Sistema de dimensión 3x3:

Ejemplos de aplicación de la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles determinados (con una única solución) mediante el cálculo de determinantes. Bachillerato. Universidad. Matemáticas. Álgebra matricial.

Solución

Podéis encontrar más problemas de este tipo en la Regla de Cramer.

Calculadoras de matrices:



Más información y problemas resueltos de álgebra matricial:



Problemas y Ecuaciones ©