Moda, media y mediana

La moda, media y mediana son parámetros estadísticos, es decir, son números que se calculan a partir de los datos para estudiarlos en su conjunto.

En esta página explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso.

Índice:

  1. Moda
  2. Media (aritmética)
  3. Mediana
  4. Media ponderada
  5. Problemas resueltos


1. Moda

La moda de un conjunto de datos es el dato que más se repite.

Ejemplo: la moda de los datos, 2, 3, 1, 3, 2, 4, 3 es 3, porque es el dato que más se repite.


Si hay varios datos que se repiten el mismo número de veces, entonces hay varias modas.

Ejemplo: la moda de los datos, 1, 2, 1, 2, 3, 4 es 1 y 2.


2. Media (aritmética)

La media de un conjunto de datos se calcula sumando todos los datos y dividiendo el resultado entre el número de datos.

Ejemplo

Las notas de Manuel en el examen de matemáticas fueron: 5, 6, 5, 4, 6 y 4.

Calculamos la suma de los datos:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Como hay 6 datos, dividimos el resultado anterior entre 6:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

La media de las notas es 5.

Significado: si Manuel hubiese obtenido la misma nota en todos los exámenes, sería la media, que es un 5. Por esta razón, suele usarse la media de todas las notas para la nota de la asignatura.

Normalmente, la media se denota por \(\overline{x}\) y a cada uno de los datos, \(x_i\). De este modo, se puede escribir la media de \(N\) datos como

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

La media que hemos explicado se denomina también media aritmética, para distinguirla de la media ponderada, la cual veremos más adelante.


3. Mediana

La mediana de un conjunto de datos ORDENADOS es el dato que ocupa la posición central.

Ejemplo

La mediana de los datos 1, 2, 3, 1, 2, 3, 1 es 2.

Para calcularla, tenemos que ordenar los datos:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

El dato central es 2, así que la mediana es 2.

Si el número de datos es PAR, entonces no hay un dato que sea central. En este caso, se toman los dos datos centrales y se define la mediana como su media.

Ejemplo

La mediana de los datos 1, 2, 3, 1, 3, 1 es 1,5.

Tenemos que ordenar los datos:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Los dos datos centrales son 1 y 2. Calculamos su media:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Por tanto, la mediana de los datos es 1,5.

La mediana es el número por debajo y por encima del cual está la mitad de los datos (la mitad por debajo y la mitad por arriba).



4. Media ponderada


En ocasiones, algunos de los datos son más importantes o tienen más peso que los demás, por lo que cuando se calcula la media de los datos, se quiere que estos influyan más en el resultado.

A cada dato \(x_i\) se le asigna un peso \(p_i\) y la media ponderada es

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Es decir, se suman los datos multiplicados por su peso y el resultado se divide entre la suma de todos los pesos.

Veamos un ejemplo para comprender este concepto.

Ejemplo

Los alumnos de matemáticas realizan un total de 3 exámenes:

  • El examen 1 corresponde a los temas 1, 2 y 3 del temario.
  • El examen 2 corresponde a los temas 1, 2, 3, 4, 5 y 6.
  • El examen 3 (examen final) corresponde a los temas 1, 2, 3, 4, 5, 6, 7 y 8.

El profesor de matemáticas considera que la nota del examen 2 debe tener más peso que la nota del examen 1, y que la nota del examen 3 debe tener más peso que las notas de los otros dos exámenes. Por esta razón, el profesor asigna un PESO a cada una de los exámenes:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Las notas de Manuel en los tres exámenes son

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Calculamos la media ponderada (en el numerador, cada nota debe multiplicarse por su peso; en el denominador, se suman todos los pesos):

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Por tanto, la nota media (ponderada) de Manuel es un 5,1, con lo que aprueba la asignatura de matemáticas.

Si en lugar de la media ponderada, el profesor calcula la media aritmética, la nota de Manuel sería

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

En este caso, Manuel no aprobaría la asignatura, aunque hubiese superado el examen final.


5. Problemas resueltos

Problema 1

La siguiente tabla recoge el número de goles marcados por el equipo de Marcos y el de Manuel durante la temporada:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Calcular la media, moda y mediana de los goles que marcó cada equipo.

Solución

Problema 2

Las alturas (en centímetros) de los componentes de dos grupos de amigos son las siguientes:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

Calcular las medias de ambos grupos y comentar los resultados.

  • ¿Todos los amigos miden lo mismo?
  • ¿En qué grupo está el amigo más alto? ¿Y el más bajo?
  • ¿En qué grupo las alturas de los amigos son cercanas a la media?
  • ¿Es la media un buen parámetro para estudiar la diferencia o variación que hay entre los datos?
Solución

Problema 3

Notas obtenidas por los 20 alumnos de la asignatura de matemáticas: 3, 8, 3, 5, 4, 7, 9, 3, 9, 10, 7, 4, 6, 7, 7, 8, 2, 7, 8, 6.

  • Calcular media, moda y mediana.
  • En general, ¿han aprobado la asignatura los alumnos?
Solución

Problema 4

En las oposiciones de profesor de matemáticas, los puntos obtenidos en el examen teórico y en el práctico cuentan el 40% y el 60% respectivamente. La nota final es la media ponderada.

Notas obtenidas por Javier y Marina:

Explicamos cómo calcular la media, moda y mediana de un conjunto de datos. También, explicamos la diferencia entre la media aritmética y la ponderada. Con ejemplos y problemas resueltos explicados paso a paso. Secundaria. ESO. Matemáticas.

¿Cuál de los dos candidatos obtendrá la única plaza de profesor por tener una nota mayor?

Solución







Problemas y Ecuaciones ©